5,854 research outputs found

    RRS Discovery Cruise 365, 11 May-02 Jun 2011. The Extended Ellett Line 2011

    Get PDF
    The Extended Ellett Line is a full-depth hydrographic section between Iceland, 60°N 20°W, Rockall and Scotland. The original Ellett Line across the Rockall Trough was first occupied in 1975 when measurements were attempted four times a year. In 1996 the line was extended to Iceland and since then has been occupied approximately annually. The data form a 35 year time series of the oceanic conditions west of the British Isles.The section monitors the characteristics of the warm water inflow into the Nordic Seas and thence to the Arctic, and observes part of the returning cold water outflow with easurements of the Iceland-Scotland Overflow and the overflow of the Wyville-Thomson Ridge into the Rockall Trough.The 2011 occupation, RRS Discovery cruise 365, was curtailed by both technical problems and bad weather. 45 of the 48 CTD stations were worked between the Iceland and Scotland shelf edges. Line G, part of the SAMS observation network of the Scottish continental shelf was partially completed, with 4 stations at the western end not worked. Samples were taken for CFC and SF6 analysis, DIC and alkalinity, inorganic nutrients, aluminium, POC, bacterial abundance and biomass, and for phytoplankton community structure. Plans to repeat stations, to collect validation data for the SAMS glider and to investigate eddies in the Rockall Trough had to be abandoned

    Factors influencing digital forensic investigations: empirical evaluation of 12 years of Dubai police cases

    Get PDF
    In Digital Forensics, the number of person-hours spent on investigation is a key factor which needs to be kept to a minimum whilst also paying close attention to the authenticity of the evidence. The literature describes challenges behind increasing person-hours and identifies several factors which contribute to this phenomenon. This paper reviews these factors and demonstrates that they do not wholly account for increases in investigation time. Using real case records from the Dubai Police, an extensive study explains the contribution of other factors to the increase in person-hours. We conclude this work by emphasizing on several factors affecting the person-hours in contrast to what most of the literature in this area proposes

    The genome sequence of the filamentous fungus Neurospora crassa

    Get PDF
    Neurospora crassa is a central organism in the history of twentieth-century genetics, biochemistry and molecular biology. Here, we report a high-quality draft sequence of the N. crassa genome. The approximately 40-megabase genome encodes about 10,000 protein-coding genes—more than twice as many as in the fission yeast Schizosaccharomyces pombe and only about 25% fewer than in the fruitfly Drosophila melanogaster. Analysis of the gene set yields insights into unexpected aspects of Neurospora biology including the identification of genes potentially associated with red light photobiology, genes implicated in secondary metabolism, and important differences in Ca21 signalling as compared with plants and animals. Neurospora possesses the widest array of genome defence mechanisms known for any eukaryotic organism, including a process unique to fungi called repeat-induced point mutation (RIP). Genome analysis suggests that RIP has had a profound impact on genome evolution, greatly slowing the creation of new genes through genomic duplication and resulting in a genome with an unusually low proportion of closely related genes

    Behavioural Digital Forensics Model: Embedding Behavioural Evidence Analysis into the Investigation of Digital Crimes

    Get PDF
    © 2018 Elsevier Ltd The state-of-the-art and practice show an increased recognition, but limited adoption, of Behavioural Evidence Analysis (BEA) within the Digital Forensics (DF) investigation process. Yet, there is currently no BEA-driven process model and guidelines for DF investigators to follow in order to take advantage of such an approach. This paper proposes the Behavioural Digital Forensics Model to fill this gap. It takes a multidisciplinary approach which incorporates BEA into in-lab investigation of seized devices related to interpersonal cases (i.e., digital crimes involving human interactions between offender(s) and victim(s)). The model was designed based on the application of traditional BEA phases to 35 real cases, and evaluated using 5 real digital crime cases - all from Dubai Police archive. This paper, however, provides details of only one case from this evaluation pool. Compared to the outcome of these cases using a traditional DF investigation process, the new model showed a number of benefits. It allowed a more effective focusing of the investigation, and provided logical directions for identifying the location of further relevant evidence. It also enabled a better understanding and interpretation of victim/offender behaviours (e.g., probable offenders’ motivations and modus operandi), which facilitated a more in depth understanding of the dynamics of the specific crime. Finally, in some cases, it enabled the identification of suspect\u27s collaborators, something which was not identified via the traditional investigative process

    Composite Fermion Metals from Dyon Black Holes and S-Duality

    Full text link
    We propose that string theory in the background of dyon black holes in four-dimensional anti-de Sitter spacetime is holographic dual to conformally invariant composite Dirac fermion metal. By utilizing S-duality map, we show that thermodynamic and transport properties of the black hole match with those of composite fermion metal, exhibiting Fermi liquid-like. Built upon Dirac-Schwinger-Zwanziger quantization condition, we argue that turning on magnetic charges to electric black hole along the orbit of Gamma(2) subgroup of SL(2,Z) is equivalent to attaching even unit of statistical flux quanta to constituent fermions. Being at metallic point, the statistical magnetic flux is interlocked to the background magnetic field. We find supporting evidences for proposed holographic duality from study of internal energy of black hole and probe bulk fermion motion in black hole background. They show good agreement with ground-state energy of composite fermion metal in Thomas-Fermi approximation and cyclotron motion of a constituent or composite fermion excitation near Fermi-point.Comment: 30 pages, v2. 1 figure added, minor typos corrected; v3. revised version to be published in JHE

    Reentrant Melting of Soliton Lattice Phase in Bilayer Quantum Hall System

    Full text link
    At large parallel magnetic field B∥B_\parallel, the ground state of bilayer quantum Hall system forms uniform soliton lattice phase. The soliton lattice will melt due to the proliferation of unbound dislocations at certain finite temperature leading to the Kosterlitz-Thouless (KT) melting. We calculate the KT phase boundary by numerically solving the newly developed set of Bethe ansatz equations, which fully take into account the thermal fluctuations of soliton walls. We predict that within certain ranges of B∥B_\parallel, the soliton lattice will melt at TKTT_{\rm KT}. Interestingly enough, as temperature decreases, it melts at certain temperature lower than TKTT_{\rm KT} exhibiting the reentrant behaviour of the soliton liquid phase.Comment: 11 pages, 2 figure

    From Rotating Atomic Rings to Quantum Hall States

    Get PDF
    Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the emblematic strongly correlated quantum Hall regime. The routes followed so far essentially rely on thermodynamics, i.e. imposing the proper Hamiltonian and cooling the system towards its ground state. In rapidly rotating 2D harmonic traps the role of the transverse magnetic field is played by the angular velocity. For particle numbers significantly larger than unity, the required angular momentum is very large and it can be obtained only for spinning frequencies extremely near to the deconfinement limit; consequently, the required control on experimental parameters turns out to be far too stringent. Here we propose to follow instead a dynamic path starting from the gas confined in a rotating ring. The large moment of inertia of the fluid facilitates the access to states with a large angular momentum, corresponding to a giant vortex. The initial ring-shaped trapping potential is then adiabatically transformed into a harmonic confinement, which brings the interacting atomic gas in the desired quantum Hall regime. We provide clear numerical evidence that for a relatively broad range of initial angular frequencies, the giant vortex state is adiabatically connected to the bosonic ν=1/2\nu=1/2 Laughlin state, and we discuss the scaling to many particles.Comment: 9 pages, 5 figure

    Bounding wide composite vector resonances at the LHC

    Get PDF
    In composite Higgs models (CHMs), electroweak precision data generically push colourless composite vector resonances to a regime where they dominantly decay into pairs of light top partners. This greatly attenuates their traces in canonical collider searches, tailored for narrow resonances promptly decaying into Standard Model final states. By reinterpreting the CMS same-sign dilepton (SS2â„“\ell) analysis at the Large Hadron Collider (LHC), originally designed to search for top partners with electric charge 5/35/3, we demonstrate its significant coverage over this kinematical regime. We also show the reach of the 13 TeV run of the LHC, with various integrated luminosity options, for a possible upgrade of the SS2â„“\ell search. The top sector of CHMs is found to be more fine-tuned in the presence of colourless composite resonances in the few TeV range.Comment: 9 pages, 5 figures. Minor corrections for publication in JHE
    • …
    corecore